Automatic Transcription of Polyphonic Music Exploiting Temporal Evolution
نویسندگان
چکیده
Automatic music transcription is the process of converting an audio recording into a symbolic representation using musical notation. It has numerous applications in music information retrieval, computational musicology, and the creation of interactive systems. Even for expert musicians, transcribing polyphonic pieces of music is not a trivial task, and while the problem of automatic pitch estimation for monophonic signals is considered to be solved, the creation of an automated system able to transcribe polyphonic music without setting restrictions on the degree of polyphony and the instrument type still remains open. In this thesis, research on automatic transcription is performed by explicitly incorporating information on the temporal evolution of sounds. First efforts address the problem by focusing on signal processing techniques and by proposing audio features utilising temporal characteristics. Techniques for note onset and offset detection are also utilised for improving transcription performance. Subsequent approaches propose transcription models based on shift-invariant probabilistic latent component analysis (SI-PLCA), modeling the temporal evolution of notes in a multiple-instrument case and supporting frequency modulations in produced notes. Datasets and annotations for transcription research have also been created during this work. Proposed systems have been privately as well as publicly evaluated within the Music Information Retrieval Evaluation eXchange (MIREX) framework. Proposed systems have been shown to outperform several state-of-the-art transcription approaches. Developed techniques have also been employed for other tasks related to music technology, such as for key modulation detection, temperament estimation, and automatic piano tutoring. Finally, proposed music transcription models have also been utilized in a wider context, namely for modeling acoustic scenes.
منابع مشابه
Towards Automatic Music Transcription: Extraction of MIDI-Data out of Polyphonic Piano Music
Driven by the increasing amount of music available electronically the need of automatic search and retrieval systems for music becomes more and more important. In this paper an algorithm for automatic transcription of polyphonic piano music into MIDI data is presented, which is a very interesting basis for database applications and music analysis. The first part of the algorithm performs a note...
متن کاملToward Evolution Strategies Application in Automatic Polyphonic Music Transcription using Electronic Synthesis
We present in this paper a new approach for polyphonic music transcription using evolution strategies (ES). Automatic music transcription is a complex process that still remains an open challenge. Using an audio signal to be transcribed as target for our ES, information needed to generate a MIDI file can be extracted from this latter one. Many techniques presented in the literature at present e...
متن کاملExplicit Duration Hidden Markov Models for Multiple-Instrument Polyphonic Music Transcription
In this paper, a method for multiple-instrument automatic music transcription is proposed that models the temporal evolution and duration of tones. The proposed model supports the use of spectral templates per pitch and instrument which correspond to sound states such as attack, sustain, and decay. Pitch-wise explicit duration hidden Markov models (EDHMMs) are integrated into a convolutive prob...
متن کاملAutomatic Transcription of Pitch Content in Music and Selected Applications
Transcription of music refers to the analysis of a music signal in order to produce a parametric representation of the sounding notes in the signal. This is conventionally carried out by listening to a piece of music and writing down the symbols of common musical notation to represent the occurring notes in the piece. Automatic transcription of music refers to the extraction of such representat...
متن کاملMultiple-instrument polyphonic music transcription using a temporally constrained shift-invariant model.
A method for automatic transcription of polyphonic music is proposed in this work that models the temporal evolution of musical tones. The model extends the shift-invariant probabilistic latent component analysis method by supporting the use of spectral templates that correspond to sound states such as attack, sustain, and decay. The order of these templates is controlled using hidden Markov mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012